The references listet here are used in the extendet project proposal
1. Friedlingstein, P. et al. Global Carbon Budget 2020. ESSD Earth Syst. Sci. Data 12, 3269–3340 (2020).
2. Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).
3. Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).
4. Bogdanov, D. et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 120467 (2021) doi:10.1016/j.energy.2021.120467.
5. Gao, Y., Gao, X. & Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 3, 272–278 (2017).
6. King, A. D. & Karoly, D. J. Climate extremes in Europe at 1.5 and 2 degrees of global warming. Environ. Res. Lett. 12, 114031 (2017).
7. Sun, Q. et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International 128, 125–136 (2019).
8. Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5°C. Science 365, eaaw6974 (2019).
9. Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nature Clim Change 8, 70–74 (2018).
10. King, Michalea. Shrinking glaciers have created a new normal for Greenland’s ice sheet – consistent ice loss for the foreseeable future. The Conversation https://theconversation.com/shrinking-glaciers-have-created-a-new-normal-for-greenlands-ice-sheet-consistent-ice-loss-for-the-foreseeable-future-144992 (2020).
11. Hansen, J. E. & Sato, M. Paleoclimate Implications for Human-Made Climate Change. in Climate Change (eds. Berger, A., Mesinger, F. & Sijacki, D.) 21–47 (Springer Vienna, 2012). doi:10.1007/978-3-7091-0973-1_2.
12. Hansen, J. et al. Young people’s burden: requirement of negative CO2 emissions. Earth System Dynamics 8, 577–616 (2017).
13. Rahmstorf, S. Modeling Sea Level Rise. Nature Education Knowledge 3, 4 (2012).
14. Boers, N. & Rypdal, M. Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc Natl Acad Sci USA 118, e2024192118 (2021).
15. Hansen, J. et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761–3812 (2016).
16. Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).
17. Christ, A. J. et al. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc Natl Acad Sci USA 118, e2021442118 (2021).
18. Hoegh-Guldberg, O. et al. Impacts of 1.5°C of Global Warming on Natural and Human Systems. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Chapter3_Low_Res.pdf (2018).
19. Rocklöv, J. & Dubrow, R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol 21, 479–483 (2020).
20. Dosio, A., Mentaschi, L., Fischer, E. M. & Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 13, 054006 (2018). 60
21. Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).
22. Pihl, E. et al. Ten new insights in climate science 2020 – a horizon scan. Global Sustainability 4, e5 (2021).
23. Hawkins, E. et al. Estimating Changes in Global Temperature since the Preindustrial Period. Bulletin of the American Meteorological Society 98, 1841–1856 (2017).
24. IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/sr15/ (2018).
25. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).
26. Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).
27. CONSTRAIN. ZERO IN ON: A new generation of climate models, COVID-19 and the Paris Agreement. https://zenodo.org/record/4282461 (2020) doi:10.5281/ZENODO.4282461.
28. UNEP Emissions Gap Report 2020. (2020).
29. Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc Natl Acad Sci USA 115, 8252–8259 (2018).
30. Pattyn, F. & Morlighem, M. The uncertain future of the Antarctic Ice Sheet. Science 367, 1331–1335 (2020).
31. Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nature Clim Change 8, 1053–1061 (2018).
32. Bell, R. E. & Seroussi, H. History, mass loss, structure, and dynamic behavior of the Antarctic Ice Sheet. Science 367, 1321–1325 (2020).
33. Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc Natl Acad Sci USA 116, 1934–1939 (2019).
34. King, M. D. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun Earth Environ 1, 1 (2020).
35. Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).
36. Wang, S. & Hausfather, Z. ESD Reviews: mechanisms, evidence, and impacts of climate tipping elements. https://esd.copernicus.org/preprints/esd-2020-16/ (2020) doi:10.5194/esd-2020-16.
37. Scambos, T. A. et al. How much, how fast?: A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Global and Planetary Change 153, 16–34 (2017).
38. Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc Natl Acad Sci USA 112, 14191–14196 (2015).
39. Feldmann, J., Levermann, A. & Mengel, M. Stabilizing the West Antarctic Ice Sheet by surface mass deposition. Sci. Adv. 5, eaaw4132 (2019).
40. WMO World Meteorological Organisation. State of the Global Climate 2020, provisional report. https://library.wmo.int/doc_num.php?explnum_id=10444 (2020).
41. Campbell, K. L. & Zaelke, D. Primer on Polar Warming and Implications for Global Climate Change: How fast action can slow the rate of warming and protect the Arctic and Antarctic from devastating climate change impacts. 156 http://www.igsd.org/wp-content/uploads/2019/05/Primer-on-Polar-Warming.pdf (2019). 61
42. Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).
43. Guarino, M.-V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Chang. 10, 928–932 (2020).
44. Mann, M. E. et al. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Sci Rep 7, 45242 (2017).
45. Francis, J. A. & Vavrus, S. J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).
46. Samset, B. H. et al. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).
47. Zheng, Y., Davis, S. J., Persad, G. G. & Caldeira, K. Climate effects of aerosols reduce economic inequality. Nat. Clim. Chang. 10, 220–224 (2020).
48. Westervelt, D. M. et al. Local and remote mean and extreme temperature response to regional aerosol emissions reductions. Atmos. Chem. Phys. 20, 3009–3027 (2020).
49. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc Natl Acad Sci USA 116, 7192–7197 (2019).
50. McLaren, D. & Corry, O. The politics and governance of research into solar geoengineering. WIREs Clim Change 12, (2021).
51. Lund, M. T. et al. A continued role of short-lived climate forcers under the Shared Socioeconomic Pathways. Earth Syst. Dynam. 11, 977–993 (2020).
52. Wiedermann, M. et al. Domino Effects in the Earth System — The potential role of wanted tipping points. arXiv:1911.10063 [physics] (2019).
53. Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).
54. Heesterman, A. R. G. Containing the risk of catastrophic climate change. Clean Techn Environ Policy 22, 1215–1227 (2020).
55. Sovacool, B. K. Reckless or righteous? Reviewing the sociotechnical benefits and risks of climate change geoengineering. Energy Strategy Reviews 35, 100656 (2021).
56. Reynolds, J. L. Solar geoengineering to reduce climate change: a review of governance proposals. Proc. R. Soc. A. 475, 20190255 (2019).
57. Ricke, K. L., Millar, R. J. & MacMartin, D. G. Constraints on global temperature target overshoot. Sci Rep 7, 14743 (2017).
58. Rueda, O., Mogollón, J. M., Tukker, A. & Scherer, L. Negative-emissions technology portfolios to meet the 1.5 °C target. Global Environmental Change 67, 102238 (2021).
59. Ellenbeck, S. & Lilliestam, J. How modelers construct energy costs: Discursive elements in Energy System and Integrated Assessment Models. Energy Research & Social Science 47, 69–77 (2019).
60. Victoria, M. et al. Solar photovoltaics is ready to power a sustainable future. Joule (2021) doi:10.1016/j.joule.2021.03.005.
61. Nikas, A., Doukas, H. & Papandreou, A. A Detailed Overview and Consistent Classification of Climate-Economy Models. in Understanding Risks and Uncertainties in Energy and Climate Policy: Multidisciplinary Methods and Tools for a Low Carbon Society (eds. Doukas, H., Flamos, A. & Lieu, J.) 1–54 (Springer International Publishing, 2019). doi:10.1007/978-3-030-03152-7_1.
62. Edmonds, J. A. et al. Integrated Assessment Modeling integrated assessment modeling (IAM). in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 5398–5428 (Springer New York, 2012). doi:10.1007/978-1-4419-0851-3_359.
63. Hare, B., Brecha, R. & Schaeffer, M. Integrated Assessment Models: what are they and how do they arrive at their conclusions? https://climateanalytics.org/media/climate_analytics_iams_briefing_oct2018.pdf (2018). 62
64. Robertson, S. Transparency, trust, and integrated assessment models: An ethical consideration for the Intergovernmental Panel on Climate Change. WIREs Clim Change 12, (2021).
65. Asefi-Najafabady, S., Villegas-Ortiz, L. & Morgan, J. The failure of Integrated Assessment Models as a response to ‘climate emergency’ and ecological breakdown: the Emperor has no clothes. Globalizations 1–11 (2020) doi:10.1080/14747731.2020.1853958.
66. Xiao, M., Junne, T., Haas, J. & Klein, M. Plummeting costs of renewables – Are energy scenarios lagging? Energy Strategy Reviews 35, 100636 (2021).
67. Jaxa-Rozen, M. & Trutnevyte, E. Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change 11, 266–273 (2021).
68. Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nature Communications 10, 1077 (2019).
69. Hall, M. ‘Solar is the new king of energy markets’. PV Magazine (2020).
70. IEA. World Energy Outlook 2020. https://www.iea.org/reports/world-energy-outlook-2020 (2020).
71. Nordhaus, W. & Sztorc, P. DICE 2013R: Introduction and User’s Manual. http://www.econ.yale.edu/~nordhaus/homepage/documents/DICE_Manual_100413r1.pdf (2013).
72. Tol, R. & Anthoff, D. The climate framework for uncertainty, negotiation and distribution (FUND), technical description, version 3.9. http://www.fund-model.org/files/documentation/Fund-3-9-Scientific-Documentation.pdf (2014).
73. Hope, C. The PAGE09 Integrated Assessment Model: A Technical Description. (2011).
74. Pezzey, J. C. V. Why the social cost of carbon will always be disputed. WIREs Clim Change 10, e558 (2019).
75. Keen, S. The appallingly bad neoclassical economics of climate change. Globalizations 1–29 (2020) doi:10.1080/14747731.2020.1807856.
76. Prina, M. G., Manzolini, G., Moser, D., Nastasi, B. & Sparber, W. Classification and challenges of bottom-up energy system models – A review. Renewable and Sustainable Energy Reviews 129, 109917 (2020).
77. Hansen, K., Breyer, C. & Lund, H. Status and perspectives on 100% renewable energy systems. Energy 175, 471–480 (2019).
78. Bogdanov, D., Gulagi, A., Fasihi, M. & Breyer, C. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Applied Energy 283, 116273 (2021).
79. Child, M., Bogdanov, D., Aghahosseini, A. & Breyer, C. The role of energy prosumers in the transition of the Finnish energy system towards 100 % renewable energy by 2050. Futures 124, 102644 (2020).
80. Bogdanov, D., Toktarova, A. & Breyer, C. Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan. Applied Energy 253, 113606 (2019).
81. Lopez, G. et al. Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. Journal of Cleaner Production 293, 126195 (2021).
82. Ram, M. et al. 100% Renewable Europe: How To Make Europe’s Energy System Climate-Neutral Before 2050. (2020).
83. Barbosa, L. de S. N. S., Bogdanov, D., Vainikka, P. & Breyer, C. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America. PLOS ONE 12, e0173820 (2017).
84. Gulagi, A., Choudhary, P., Bogdanov, D. & Breyer, C. Electricity system based on 100% renewable energy for India and SAARC. PLOS ONE 12, e0180611 (2017). 63
85. Ram, M. et al. Global Energy System Based on 100% Renewable Energy. 321 http://energywatchgroup.org/wp-content/uploads/EWG_LUT_100RE_All_Sectors_Global_Report_2019.pdf (2019).
86. Aghahosseini, A. & Breyer, C. From hot rock to useful energy: A global estimate of enhanced geothermal systems potential. Applied Energy 279, 115769 (2020).
87. Ghorbani, N., Makian, H. & Breyer, C. A GIS-based method to identify potential sites for pumped hydro energy storage – Case of Iran. Energy 169, 854–867 (2019).
88. Mensah, O. T., Oyewo, A. S. & Breyer, C. The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana. Renewable Energy (2021) doi:10.1016/j.renene.2021.03.098.
89. Krey, V. et al. MESSAGEix-GLOBIOM Documentation. https://pure.iiasa.ac.at/id/eprint/17115 (2020) doi:10.22022/iacc/03-2021.17115.
90. Luderer, G. et al. Description of the REMIND Model (Version 1.6). SSRN Electronic Journal (2015) doi:10.2139/ssrn.2697070.
91. Lund, H. & Thellufsen, J. Z. EnergyPLAN – Advanced Energy Systems Analysis Computer Model. (Zenodo, 2020). doi:10.5281/zenodo.4017214.
92. Heaps, C. G. LEAP: The Low Emissions Analysis Platform. [Software version: 2020.1.29]. https://leap.sei.org (2021).
93. Loulou, R., Goldstein, G., Kanudia, A., Lenttila, A. & Remme, U. Documentation for the TIMES Model. https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (2016).
94. Howells, M. et al. OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy 39, 5850–5870 (2011).
95. Brown, T., Hörsch, J. & Schlachtberger, D. PyPSA: Python for Power System Analysis. Journal of Open Research Software 6, 4 (2018).
96. Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters 13, 063001 (2018).
97. Fajardy, M. et al. The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5 °C or 2 °C world. Global Environmental Change 68, 102262 (2021).
98. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002 (2018).
99. Nemet, G. F. et al. Negative emissions—Part 3: Innovation and upscaling. Environmental Research Letters 13, 063003 (2018).
100. Creutzig, F. et al. The mutual dependence of negative emission technologies and energy systems. Energy Environ. Sci. 12, 1805–1817 (2019).
101. Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. Journal of Cleaner Production 224, 957–980 (2019).
102. Breyer, C., Fasihi, M. & Aghahosseini, A. Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling. Mitigation and Adaptation Strategies for Global Change 25, 43–65 (2020).
103. Breyer, C., Fasihi, M., Bajamundi, C. & Creutzig, F. Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule 3, 2053–2057 (2019).
104. Williamson, P. Emissions reduction: Scrutinize CO2 removal methods. Nature 530, 153–155 (2016).
105. N‘Yeurt, A. de R., Chynoweth, D. P., Capron, M. E., Stewart, J. R. & Hasan, M. A. Negative carbon via Ocean Afforestation. Process Safety and Environmental Protection 90, 467–474 (2012).
106. Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018). 64
107. Mac Dowell, N. & Fajardy, M. Inefficient power generation as an optimal route to negative emissions via BECCS? Environmental Research Letters 12, 045004 (2017).
108. IPCC. Land Use, Land-Use Change, and Forestry. 875 https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (2000).
109. Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).
110. Veldman, J. W. et al. Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services. BioScience 65, 1011–1018 (2015).
111. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76 (2019).
112. National Academies of Sciences, Engineering & Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. (The National Academies Press, 2019). doi:10.17226/25259.
113. Monastersky, R. Seabed scars raise questions over carbon-storage plan. Nature 504, 339–340 (2013).
114. Aghahosseini, A. & Breyer, C. Assessment of geological resource potential for compressed air energy storage in global electricity supply. Energy Conversion and Management 169, 161–173 (2018).
115. Ram, M., Gulagi, A., Bogdanov, D. & Aghahosseini, A. Building Blocks of India’s Energy Future: North India’s Energy Transition based on Renewables. (2020).
116. Ghorbani, N., Aghahosseini, A. & Breyer, C. Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis. Renewable Energy 146, 125–148 (2020).
117. Oyewo, A. S. et al. Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia. Renewable Energy S0960148121007059 (2021) doi:10.1016/j.renene.2021.05.029.
118. Gulagi, A. et al. Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines. Renewable and Sustainable Energy Reviews 144, 110934 (2021).
119. Oyewo, A. S., Aghahosseini, A., Ram, M., Lohrmann, A. & Breyer, C. Pathway towards achieving 100% renewable electricity by 2050 for South Africa. Solar Energy 191, 549–565 (2019).
120. Solomon, A. A., Bogdanov, D. & Breyer, C. Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries. Energy 155, 87–104 (2018).
121. Kilickaplan, A. et al. An energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050. Solar Energy 158, 218–235 (2017).
122. Satymov, R., Bogdanov, D., & Breyer, C. The Value of Fast Transitioning to a Fully Sustainable Energy System: The Case of Turkmenistan. IEEE Access 9, 13590–13611 (2021).
123. Gulagi, A., Ram, M., Solomon, A. A., Khan, M. & Breyer, C. Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh. Renewable Energy 155, 899–920 (2020).
124. Renewable Energy Institute, Agora Energiewende & LUT University. Renewable pathways to climate-neutral Japan. https://www.renewable-ei.org/pdfdownload/activities/LUT-Agora-REI_2021_study.pdf (2021).
125. Azzuni, A. et al. Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050. Sustainability 12, 4921 (2020).
126. Osorio Aravena, J. C. et al. The role of solar PV, wind energy, and storage technologies in the transition toward a fully sustainable energy system in Chile by 2050 across power, 65
heat, transport and desalination sectors. International Journal of Sustainable Energy Planning and Management 77-94 Sider (2020) doi:10.5278/IJSEPM.3385.
127. Sadiqa, A., Gulagi, A. & Breyer, C. Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050. Energy 147, 518–533 (2018).
128. Oyewo, A. S., Aghahosseini, A., Bogdanov, D. & Breyer, C. Pathways to a fully sustainable electricity supply for Nigeria in the mid-term future. Energy Conversion and Management 178, 44–64 (2018).
129. Caldera, U., Bogdanov, D., Afanasyeva, S. & Breyer, C. Role of Seawater Desalination in the Management of an Integrated Water and 100% Renewable Energy Based Power Sector in Saudi Arabia. Water 10, 3 (2017).
130. Child, M., Breyer, C., Bogdanov, D. & Fell, H.-J. The role of storage technologies for the transition to a 100% renewable energy system in Ukraine. Energy Procedia 135, 410–423 (2017).
131. Enebish, N., Breyer, C. & Bogdanov, D. OPTIONS FOR MONGOLIA IN ENERGY TRANSITION TO 100% RENEWABLES. in 58 (2018).
132. de Souza Noel Simas Barbosa, L., Orozco, J. F., Bogdanov, D., Vainikka, P. & Breyer, C. Hydropower and Power-to-gas Storage Options: The Brazilian Energy System Case. Energy Procedia 99, 89–107 (2016).
133. Pregger, T. et al. Future Fuels—Analyses of the Future Prospects of Renewable Synthetic Fuels. Energies 13, 138 (2019).
134. Leonard, M., Pisani-Ferry, J., Shapiro, J., Tagliapietra, S. & Wolff, G. The geopolitics of the European Green Deal. https://ecfr.eu/publication/the-geopolitics-of-the-european-green-deal/ (2021).
135. Gulagi, A., Ram, M. & Breyer, C. Role of the transmission grid and solar wind complementarity in mitigating the monsoon effect in a fully sustainable electricity system for India. IET Renewable Power Generation 14, 254-262(8) (2020).
136. Gulagi, A., Bogdanov, D. & Breyer, C. The role of storage technologies in energy transition pathways towards achieving a fully sustainable energy system for India. Journal of Energy Storage 17, 525–539 (2018).
137. Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S. & Staffell, I. The importance of open data and software: Is energy research lagging behind? Energy Policy 101, 211–215 (2017).
138. Cao, K.-K., Cebulla, F., Gómez Vilchez, J. J., Mousavi, B. & Prehofer, S. Raising awareness in model-based energy scenario studies—a transparency checklist. Energy, Sustainability and Society 6, 28 (2016).
139. Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications 28, 439–453 (2020).
140. Krey, V. et al. Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models. Energy 172, 1254–1267 (2019).
141. Coin News Media Group. 2021 Inflation Calculator. US Inflation Calculator https://www.usinflationcalculator.com/.
142. Breyer, C. et al. North-East Asian Super Grid: Renewable energy mix and economics. Japanese Journal of Applied Physics 54, 08KJ01 (2015).
143. Larson, E. et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts. https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf (2020).
144. National Renewable Energy Laboratory. Annual Technology Baseline Data. https://atb.nrel.gov/electricity/2019/data.html. 66